Square Root and Cube Root Problems and Solutions
-
1. What is the square root of 0.16
- 0.4
- 0.04
- 0.004
- 4
Answer :
Option A
Explanation:
as .4 * .4 = 0.16
-
2. Evaluate \begin{aligned}
\sqrt{1471369}
\end{aligned}- 1213
- 1223
- 1233
- 1243
Answer :
Option A
-
3. if a = 0.1039, then the value of
\begin{aligned} \sqrt{4a^2 - 4a + 1} + 3a \end{aligned}- 12.039
- 1.2039
- 11.039
- 1.1039
Answer :
Option D
Explanation:
Tip: Please check the question carefully before answering. As 3a is not under the root we can convert it into a formula , lets evaluate now :
\begin{aligned}
= \sqrt{4a^2 - 4a + 1} + 3a \end{aligned}
\begin{aligned}
= \sqrt{(1)^2 + (2a)^2 - 2x1x2a} + 3a \end{aligned}
\begin{aligned}
= \sqrt{(1-2a)^2} + 3a \end{aligned}
\begin{aligned}
= (1-2a) + 3a \end{aligned}
\begin{aligned}
= (1-2a) + 3a \end{aligned}
\begin{aligned}
= 1 + a = 1 + 0.1039 = 1.1039 \end{aligned}
-
4. Evaluate
\begin{aligned}
\sqrt{53824}
\end{aligned}- 132
- 232
- 242
- 253
Answer :
Option B
-
5. The least perfect square, which is divisible by each of 21, 36 and 66 is
- 213414
- 213424
- 213434
- 213444
Answer :
Option D
Explanation:
L.C.M. of 21, 36, 66 = 2772
Now, 2772 = 2 x 2 x 3 x 3 x 7 x 11
To make it a perfect square, it must be multiplied by 7 x 11.
So, required number = 2 x 2 x 3 x 3 x 7 x 7 x 11 x 11 = 213444 -
6. Evaluate
\begin{aligned} \sqrt[3]{4\frac{12}{125}} \end{aligned}- \begin{aligned} 1\frac{2}{5} \end{aligned}
- \begin{aligned} 1\frac{3}{5} \end{aligned}
- \begin{aligned} 1\frac{4}{5} \end{aligned}
- 1
Answer :
Option B
Explanation:
\begin{aligned}
= \sqrt[3]{\frac{512}{125}} \end{aligned}
\begin{aligned}
= (\frac{8*8*8}{5*5*5})^{\frac{1}{3}} \end{aligned}
\begin{aligned} = \frac{8}{5} = 1\frac{3}{5} \end{aligned} -
7. Find the value of X
\begin{aligned} \sqrt{81} + \sqrt{0.81} = 10.09 - X \end{aligned}- 0.019
- 0.19
- 0.9
- 0.109
Answer :
Option B
Explanation:
\begin{aligned}
=> \sqrt{81} + \sqrt{0.81} = 10.09 - X
\end{aligned}
\begin{aligned}
=> 9 + 0.9 = 10.09 - X
\end{aligned}
\begin{aligned}
=> X = 10.09 - 9.9 = 0.19
\end{aligned}