Square Root and Cube Root Problems and Solutions

  • 1. What is the square root of 0.16

    1. 0.4
    2. 0.04
    3. 0.004
    4. 4
    Answer :

    Option A

    Explanation:

    as .4 * .4 = 0.16

  • 2. Evaluate \begin{aligned}
    \sqrt{1471369}
    \end{aligned}

    1. 1213
    2. 1223
    3. 1233
    4. 1243
    Answer :

    Option A

  • 3. if a = 0.1039, then the value of
    \begin{aligned} \sqrt{4a^2 - 4a + 1} + 3a \end{aligned}

    1. 12.039
    2. 1.2039
    3. 11.039
    4. 1.1039
    Answer :

    Option D

    Explanation:

    Tip: Please check the question carefully before answering. As 3a is not under the root we can convert it into a formula , lets evaluate now :

    \begin{aligned}
    = \sqrt{4a^2 - 4a + 1} + 3a \end{aligned}

    \begin{aligned}
    = \sqrt{(1)^2 + (2a)^2 - 2x1x2a} + 3a \end{aligned}

    \begin{aligned}
    = \sqrt{(1-2a)^2} + 3a \end{aligned}

    \begin{aligned}
    = (1-2a) + 3a \end{aligned}

    \begin{aligned}
    = (1-2a) + 3a \end{aligned}

    \begin{aligned}
    = 1 + a = 1 + 0.1039 = 1.1039 \end{aligned}



  • 4. Evaluate
    \begin{aligned}
    \sqrt{53824}
    \end{aligned}

    1. 132
    2. 232
    3. 242
    4. 253
    Answer :

    Option B

  • 5. The least perfect square, which is divisible by each of 21, 36 and 66 is

    1. 213414
    2. 213424
    3. 213434
    4. 213444
    Answer :

    Option D

    Explanation:

    L.C.M. of 21, 36, 66 = 2772

    Now, 2772 = 2 x 2 x 3 x 3 x 7 x 11

    To make it a perfect square, it must be multiplied by 7 x 11.

    So, required number = 2 x 2 x 3 x 3 x 7 x 7 x 11 x 11 = 213444

  • 6. Evaluate
    \begin{aligned} \sqrt[3]{4\frac{12}{125}} \end{aligned}

    1. \begin{aligned} 1\frac{2}{5} \end{aligned}
    2. \begin{aligned} 1\frac{3}{5} \end{aligned}
    3. \begin{aligned} 1\frac{4}{5} \end{aligned}
    4. 1
    Answer :

    Option B

    Explanation:

    \begin{aligned}
    = \sqrt[3]{\frac{512}{125}} \end{aligned}
    \begin{aligned}
    = (\frac{8*8*8}{5*5*5})^{\frac{1}{3}} \end{aligned}

    \begin{aligned} = \frac{8}{5} = 1\frac{3}{5} \end{aligned}

  • 7. Find the value of X
    \begin{aligned} \sqrt{81} + \sqrt{0.81} = 10.09 - X \end{aligned}

    1. 0.019
    2. 0.19
    3. 0.9
    4. 0.109
    Answer :

    Option B

    Explanation:

    \begin{aligned}
    => \sqrt{81} + \sqrt{0.81} = 10.09 - X
    \end{aligned}

    \begin{aligned}
    => 9 + 0.9 = 10.09 - X
    \end{aligned}

    \begin{aligned}
    => X = 10.09 - 9.9 = 0.19
    \end{aligned}

Please Like Us

disawar satta king