Square Root and Cube Root Problems and Solutions
-
8. Evaluate
\begin{aligned}
\sqrt{6084}
\end{aligned}- 75
- 77
- 78
- 68
Answer :
Option C
-
9. Evaluate \begin{aligned} \sqrt[3]{\sqrt{.000064}} \end{aligned}
- 0.0002
- 0.002
- 0.02
- 0.2
Answer :
Option D
Explanation:
\begin{aligned} = \sqrt{.000064} \end{aligned}
\begin{aligned} = \sqrt{\frac{64}{10^6}} \end{aligned}
\begin{aligned} = \frac{8}{10^3} = .008 \end{aligned}
\begin{aligned} = \sqrt[3]{.008} \end{aligned}
\begin{aligned} = \sqrt[3]{\frac{8}{1000}} \end{aligned}
\begin{aligned} = \frac{2}{10} = 0.2 \end{aligned} -
10. Evaluate
\begin{aligned}
\sqrt{1\frac{9}{16}}
\end{aligned}- \begin{aligned} 1\frac{1}{6} \end{aligned}
- \begin{aligned} 1\frac{1}{5} \end{aligned}
- \begin{aligned} 1\frac{1}{4} \end{aligned}
- \begin{aligned} 1\frac{1}{3} \end{aligned}
Answer :
Option C
Explanation:
\begin{aligned}
= \sqrt{\frac{25}{16}}
\end{aligned}
\begin{aligned}
= \frac{\sqrt{25}}{\sqrt{16}}
\end{aligned}
\begin{aligned}
= \frac{5}{4}
\end{aligned}
\begin{aligned}
= 1\frac{1}{4}
\end{aligned} -
11. \begin{aligned} \sqrt{\frac{32.4}{x}} = 2 \end{aligned}
- 8
- 8.1
- 9
- 9.1
Answer :
Option B
-
12. The largest four digit number which is a perfect cube, is:
- 7000
- 8000
- 9261
- 9999
Answer :
Option C
Explanation:
21*21*21 = 9261
-
13. The cube root of .000216 is
- 0.6
- 0.006
- 0.06
- .0006
Answer :
Option C
-
14. Evaluate
\begin{aligned}
\sqrt{0.00059049}
\end{aligned}- 0.00243
- 0.0243
- 0.243
- 2.43
Answer :
Option B
Explanation:
Very obvious tip here is, after squre root the terms after decimal will be half (that is just a trick), works awesome at many questions like this.