Square Root and Cube Root Problems and Solutions

  • 15. What is the smallest number by which 3600 be divided to make it a perfect cube.

    1. 450
    2. 445
    3. 440
    4. 430
    Answer :

    Option A

    Explanation:

    \begin{aligned}
    3600 = 2^3 \times 5^2 \times 3^2 \times 2
    \end{aligned}
    To make it a perfect cube it must be divided by
    \begin{aligned}
    5^2 \times 3^2 \times 2 = 450
    \end{aligned}

  • 16. \begin{aligned}
    (\frac{\sqrt{625}}{11} \times \frac{14}{\sqrt{25}} \times \frac{11}{\sqrt{196}})
    \end{aligned}

    1. 15
    2. 7
    3. 5
    4. 9
    Answer :

    Option C

    Explanation:

    \begin{aligned}
    = (\frac{25}{11} \times \frac{14}{5} \times \frac{11}{14})
    \end{aligned}

    \begin{aligned}
    = 5
    \end{aligned}

  • 17. Evaluate
    \begin{aligned}
    \sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
    \end{aligned}

    1. 16
    2. 8
    3. 6
    4. 4
    Answer :

    Option D

    Explanation:

    \begin{aligned}
    = \sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
    \end{aligned}

    \begin{aligned}
    =\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
    \end{aligned}

    \begin{aligned}
    =\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
    \end{aligned}

    \begin{aligned}
    =\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{169}}}}
    \end{aligned}

    \begin{aligned}
    =\sqrt{10+\sqrt{25+\sqrt{108+13}}}
    \end{aligned}

    \begin{aligned}
    =\sqrt{10+\sqrt{25+\sqrt{121}}}
    \end{aligned}

    \begin{aligned}
    =\sqrt{10+\sqrt{25+11}}
    \end{aligned}

    \begin{aligned}
    =\sqrt{10+\sqrt{36}}
    \end{aligned}

    \begin{aligned}
    =\sqrt{10+6}
    \end{aligned}

    \begin{aligned}
    =\sqrt{16} = 4
    \end{aligned}

  • 18. \begin{aligned}
    \sqrt{41 - \sqrt{21 + \sqrt{19 - \sqrt{9}}}}
    \end{aligned}

    1. 4
    2. 26
    3. 16
    4. 6
    Answer :

    Option D

    Explanation:

    \begin{aligned}
    = \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}}
    \end{aligned}

    \begin{aligned}
    = \sqrt{41 - \sqrt{21 + \sqrt{16}}}
    \end{aligned}

    \begin{aligned}
    = \sqrt{41 - \sqrt{21 + 4}}
    \end{aligned}

    \begin{aligned}
    = \sqrt{41 - \sqrt{25}}
    \end{aligned}

    \begin{aligned}
    = \sqrt{41 - \sqrt{25}}
    \end{aligned}

    \begin{aligned}
    = \sqrt{41 - 5}
    \end{aligned}

    \begin{aligned}
    = \sqrt{36} = 6
    \end{aligned}

  • 19. Evaluate
    \begin{aligned}
    \sqrt{248+\sqrt{64}}
    \end{aligned}

    1. 14
    2. 26
    3. 16
    4. 36
    Answer :

    Option C

    Explanation:

    \begin{aligned}
    = \sqrt{248+\sqrt{64}}
    \end{aligned}

    \begin{aligned}
    = \sqrt{248+8}
    \end{aligned}

    \begin{aligned}
    = \sqrt{256}
    \end{aligned}

    \begin{aligned}
    = 16
    \end{aligned}

  • 20. Find the value of x
    \begin{aligned}
    \frac{2707}{\sqrt{x}} = 27.07
    \end{aligned}

    1. 1000
    2. 10000
    3. 10000000
    4. None of above
    Answer :

    Option B

    Explanation:

    \begin{aligned}
    = \frac{2707}{27.07} = \sqrt{x}
    \end{aligned}

    \begin{aligned}
    => \frac{2707 \times 100}{2707} = \sqrt{x}
    \end{aligned}

    \begin{aligned}
    => 100 = \sqrt{x}
    \end{aligned}

    \begin{aligned}
    => x = 100^2 = 10000
    \end{aligned}

  • 21. \begin{aligned} \sqrt{0.00059049} \end{aligned}

    1. 24.3
    2. 2.43
    3. 0.243
    4. 0.0243
    Answer :

    Option D

Please Like Us

disawar satta king