Square Root and Cube Root Problems and Solutions
-
15. What is the smallest number by which 3600 be divided to make it a perfect cube.
- 450
- 445
- 440
- 430
Answer :
Option A
Explanation:
\begin{aligned}
3600 = 2^3 \times 5^2 \times 3^2 \times 2
\end{aligned}
To make it a perfect cube it must be divided by
\begin{aligned}
5^2 \times 3^2 \times 2 = 450
\end{aligned} -
16. \begin{aligned}
(\frac{\sqrt{625}}{11} \times \frac{14}{\sqrt{25}} \times \frac{11}{\sqrt{196}})
\end{aligned}
- 15
- 7
- 5
- 9
Answer :
Option C
Explanation:
\begin{aligned}
= (\frac{25}{11} \times \frac{14}{5} \times \frac{11}{14})
\end{aligned}
\begin{aligned}
= 5
\end{aligned} -
17. Evaluate
\begin{aligned}
\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
\end{aligned}- 16
- 8
- 6
- 4
Answer :
Option D
Explanation:
\begin{aligned}
= \sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+\sqrt{225}}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{154+15}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+\sqrt{169}}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{108+13}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+\sqrt{121}}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{25+11}}
\end{aligned}
\begin{aligned}
=\sqrt{10+\sqrt{36}}
\end{aligned}
\begin{aligned}
=\sqrt{10+6}
\end{aligned}
\begin{aligned}
=\sqrt{16} = 4
\end{aligned}
-
18. \begin{aligned}
\sqrt{41 - \sqrt{21 + \sqrt{19 - \sqrt{9}}}}
\end{aligned}- 4
- 26
- 16
- 6
Answer :
Option D
Explanation:
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{19 - 3}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + \sqrt{16}}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{21 + 4}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - \sqrt{25}}
\end{aligned}
\begin{aligned}
= \sqrt{41 - 5}
\end{aligned}
\begin{aligned}
= \sqrt{36} = 6
\end{aligned}
-
19. Evaluate
\begin{aligned}
\sqrt{248+\sqrt{64}}
\end{aligned}- 14
- 26
- 16
- 36
Answer :
Option C
Explanation:
\begin{aligned}
= \sqrt{248+\sqrt{64}}
\end{aligned}
\begin{aligned}
= \sqrt{248+8}
\end{aligned}
\begin{aligned}
= \sqrt{256}
\end{aligned}
\begin{aligned}
= 16
\end{aligned} -
20. Find the value of x
\begin{aligned}
\frac{2707}{\sqrt{x}} = 27.07
\end{aligned}
- 1000
- 10000
- 10000000
- None of above
Answer :
Option B
Explanation:
\begin{aligned}
= \frac{2707}{27.07} = \sqrt{x}
\end{aligned}
\begin{aligned}
=> \frac{2707 \times 100}{2707} = \sqrt{x}
\end{aligned}
\begin{aligned}
=> 100 = \sqrt{x}
\end{aligned}
\begin{aligned}
=> x = 100^2 = 10000
\end{aligned}
-
21. \begin{aligned} \sqrt{0.00059049} \end{aligned}
- 24.3
- 2.43
- 0.243
- 0.0243
Answer :
Option D