Surds and Indices Problems and Solutions
-
1. \begin{aligned} \sqrt{8}^\frac{1}{3} \end{aligned}
- 2
- 4
- \begin{aligned} \sqrt{2} \end{aligned}
- 8
Answer :
Option C
Explanation:
\begin{aligned}
= ((8)^\frac{1}{2})^\frac{1}{3} = 8^{(\frac{1}{2} \times \frac{1}{3})}
\end{aligned}
\begin{aligned}
= (8)^{\frac{1}{6}}
\end{aligned}
\begin{aligned}
= (2)^{3(\frac{1}{6})}
\end{aligned}
\begin{aligned}
= (2)^{\frac{1}{2}}
\end{aligned} -
2. \begin{aligned}
\text{if }6^m = 46656, \\\text{ What is the value of }6^{m-2}
\end{aligned}- 7776
- 7782
- 1296
- 1290
Answer :
Option C
Explanation:
\begin{aligned}
6^{m-2}\\ = \dfrac{6^m}{6^2}\\ = \dfrac{46656}{6^2}\\ = \dfrac{46656}{36} = 1296
\end{aligned} -
3. Find the value of
\begin{aligned} (10)^{150} \div (10)^{146} \end{aligned}- 10
- 100
- 1000
- 10000
Answer :
Option D
Explanation:
\begin{aligned}
= \frac{(10)^{150}}{(10)^{146}} = 10^4 = 10000
\end{aligned} -
4. \begin{aligned}
\text{If }2x = \sqrt[3]{32}, \text{ then x is equal to}
\end{aligned}
- \begin{aligned} \frac{5}{2} \end{aligned}
- \begin{aligned} \frac{2}{5} \end{aligned}
- \begin{aligned} \frac{3}{5} \end{aligned}
- \begin{aligned} \frac{5}{3} \end{aligned}
Answer :
Option D
Explanation:
\begin{aligned}
= (32)^{\frac{1}{3}}\\
= (2^5)^{\frac{1}{3}}\\
= 2^{\frac{5}{3}}\\
=> x= \frac{5}{3}
\end{aligned} -
5. \begin{aligned}
x = 3 + 2\sqrt{2}, \text{ then the value of }\\
(\sqrt{x} - \frac{1}{\sqrt{x}})
\end{aligned}- 1
- 2
- 3
- 4
Answer :
Option B
Explanation:
Clue:
\begin{aligned}
(\sqrt{x} - \frac{1}{\sqrt{x}})^2 = x + \frac{1}{x} - 2 \
\end{aligned}
Now put the value of x to calculate the answer :) -
6. If m and n are whole numbers such that
\begin{aligned} m^n=121 \end{aligned}
, the value of \begin{aligned} (m-1)^{n + 1} \end{aligned} is- 1
- 10
- 100
- 1000
Answer :
Option D
Explanation:
We know that \begin{aligned} (11)^2 = 121
\end{aligned}
So, putting values in said equation we get,
\begin{aligned} (11-1)^{2 + 1} = (10)^3 = 1000 \end{aligned} -
7. \begin{aligned}
\frac{1}{1+a^{(n-m)}} + \frac{1}{1+a^{(m-n)}} = ?
\end{aligned}- 1
- 2
- 3
- 4
Answer :
Option A
Explanation:
\begin{aligned}
= \frac{1}{\left( 1 + \frac{a^n}{a^m} \right)} +
\frac{1}{\left( 1 + \frac{a^m}{a^n} \right)} \\
= \frac{a^m}{(a^m+a^n)} + \frac{a^n}{(a^m+a^n)} \\
= \frac{(a^m+a^n)}{(a^m+a^n)} = 1
\end{aligned}