Surds and Indices Problems and Solutions

  • 1. \begin{aligned} \sqrt{8}^\frac{1}{3} \end{aligned}

    1. 2
    2. 4
    3. \begin{aligned} \sqrt{2} \end{aligned}
    4. 8
    Answer :

    Option C

    Explanation:

    \begin{aligned}
    = ((8)^\frac{1}{2})^\frac{1}{3} = 8^{(\frac{1}{2} \times \frac{1}{3})}
    \end{aligned}

    \begin{aligned}
    = (8)^{\frac{1}{6}}
    \end{aligned}

    \begin{aligned}
    = (2)^{3(\frac{1}{6})}
    \end{aligned}

    \begin{aligned}
    = (2)^{\frac{1}{2}}
    \end{aligned}

  • 2. \begin{aligned}
    \text{if }6^m = 46656, \\\text{ What is the value of }6^{m-2}
    \end{aligned}

    1. 7776
    2. 7782
    3. 1296
    4. 1290
    Answer :

    Option C

    Explanation:

    \begin{aligned}
    6^{m-2}\\ = \dfrac{6^m}{6^2}\\ = \dfrac{46656}{6^2}\\ = \dfrac{46656}{36} = 1296
    \end{aligned}

  • 3. Find the value of
    \begin{aligned} (10)^{150} \div (10)^{146} \end{aligned}

    1. 10
    2. 100
    3. 1000
    4. 10000
    Answer :

    Option D

    Explanation:

    \begin{aligned}
    = \frac{(10)^{150}}{(10)^{146}} = 10^4 = 10000
    \end{aligned}

  • 4. \begin{aligned}
    \text{If }2x = \sqrt[3]{32}, \text{ then x is equal to}
    \end{aligned}

    1. \begin{aligned} \frac{5}{2} \end{aligned}
    2. \begin{aligned} \frac{2}{5} \end{aligned}
    3. \begin{aligned} \frac{3}{5} \end{aligned}
    4. \begin{aligned} \frac{5}{3} \end{aligned}
    Answer :

    Option D

    Explanation:

    \begin{aligned}
    = (32)^{\frac{1}{3}}\\
    = (2^5)^{\frac{1}{3}}\\
    = 2^{\frac{5}{3}}\\
    => x= \frac{5}{3}
    \end{aligned}

  • 5. \begin{aligned}
    x = 3 + 2\sqrt{2}, \text{ then the value of }\\
    (\sqrt{x} - \frac{1}{\sqrt{x}})
    \end{aligned}

    1. 1
    2. 2
    3. 3
    4. 4
    Answer :

    Option B

    Explanation:

    Clue:

    \begin{aligned}
    (\sqrt{x} - \frac{1}{\sqrt{x}})^2 = x + \frac{1}{x} - 2 \
    \end{aligned}
    Now put the value of x to calculate the answer :)

  • 6. If m and n are whole numbers such that
    \begin{aligned} m^n=121 \end{aligned}
    , the value of \begin{aligned} (m-1)^{n + 1} \end{aligned} is

    1. 1
    2. 10
    3. 100
    4. 1000
    Answer :

    Option D

    Explanation:

    We know that \begin{aligned} (11)^2 = 121
    \end{aligned}
    So, putting values in said equation we get,
    \begin{aligned} (11-1)^{2 + 1} = (10)^3 = 1000 \end{aligned}

  • 7. \begin{aligned}
    \frac{1}{1+a^{(n-m)}} + \frac{1}{1+a^{(m-n)}} = ?
    \end{aligned}

    1. 1
    2. 2
    3. 3
    4. 4
    Answer :

    Option A

    Explanation:

    \begin{aligned}
    = \frac{1}{\left( 1 + \frac{a^n}{a^m} \right)} +
    \frac{1}{\left( 1 + \frac{a^m}{a^n} \right)} \\
    = \frac{a^m}{(a^m+a^n)} + \frac{a^n}{(a^m+a^n)} \\
    = \frac{(a^m+a^n)}{(a^m+a^n)} = 1
    \end{aligned}

Please Like Us