Surds and Indices Problems and Solutions

  • 8. \begin{aligned}
    \text{If }x = \left(8 + 3\sqrt{7}\right),\text{ what is the value of }\\\left(\sqrt{x} - \dfrac{1}{\sqrt{x}}\right)?
    \end{aligned}

    1. \begin{aligned} \sqrt{13} \end{aligned}
    2. \begin{aligned} \sqrt{14} \end{aligned}
    3. \begin{aligned} \sqrt{15} \end{aligned}
    4. \begin{aligned} \sqrt{16} \end{aligned}
    Answer :

    Option B

    Explanation:

    \begin{align}&\left(\sqrt{x} - \dfrac{1}{\sqrt{x}}\right)^2\\\\
    &= x - 2 + \dfrac{1}{x}\\\\
    &= x + \dfrac{1}{x} - 2 \\\\
    &= \left(8 + 3\sqrt{7}\right) + \dfrac{1}{\left(8 + 3\sqrt{7}\right)} - 2 \\\\
    &= \left(8 + 3\sqrt{7}\right) + \dfrac{\left(8 - 3\sqrt{7}\right)}{\left(8 + 3\sqrt{7}\right)\left(8 - 3\sqrt{7}\right)} - 2 \\\\
    &= \left(8 + 3\sqrt{7}\right) + \dfrac{\left(8 - 3\sqrt{7}\right)}{8^2 - \left(3\sqrt{7}\right)^2} - 2 \\\\
    &= \left(8 + 3\sqrt{7}\right) + \dfrac{\left(8 - 3\sqrt{7}\right)}{64 - 63} - 2 \\\\
    &= \left(8 + 3\sqrt{7}\right) + \dfrac{\left(8 - 3\sqrt{7}\right)}{1} - 2 \\\\
    &= 8 + 3\sqrt{7} + 8 - 3\sqrt{7} - 2 \\\\
    &= 14 \\\\
    &\text{as }\left(\sqrt{x} - \dfrac{1}{\sqrt{x}}\right)^2 = 14\\\\
    &\text{so ,}\left(\sqrt{x} - \dfrac{1}{\sqrt{x}}\right) = \sqrt{14}\end{align}

  • 9. \begin{aligned} (1000)^7 \div (10)^{18} = ? \end{aligned}

    1. 10
    2. 100
    3. 1000
    4. 10000
    Answer :

    Option C

    Explanation:

    \begin{aligned}
    = \frac{(10^3)^7}{(10)^{18}}
    \end{aligned}

    \begin{aligned}
    = \frac{(10)^{21}}{(10)^{18}} = 10^3 = 1000
    \end{aligned}

  • 10. \begin{aligned}
    \text{If } 3^{x-y} = 27 \text{ and } 3^{x+y} = 243, \\
    \text{ then find the value of x }
    \end{aligned}

    1. 1
    2. 2
    3. 3
    4. 4
    Answer :

    Option D

    Explanation:

    \begin{aligned}3^{x-y} = 27 = 3^3 <=> x-y = 3 \text{... (i)}\\
    3^{x+y} = 243 = 3^5 <=> x+y = 5 \text{... (ii)} \\

    \text{ adding (i) and (ii)}
    => 2x = 8 \\
    => x = 4
    \end{aligned}

  • 11. Evaluate \begin{aligned} 256^{0.16} \times (256)^{0.09} \end{aligned}

    1. 2
    2. 4
    3. 8
    4. 16
    Answer :

    Option B

    Explanation:

    \begin{aligned}
    = 256^{0.16+0.09} = 256^{0.25} = 256^{\frac{25}{100}}
    \end{aligned}

    \begin{aligned}
    = 256^{\frac{1}{4}}= (4^4)^{\frac{1}{4}}
    \end{aligned}

    \begin{aligned}
    =(4)^{4 \times \frac{1}{4}} = 4
    \end{aligned}

  • 12. \begin{align}
    \left(\dfrac{a}{b}\right)^{x-2} = \left(\dfrac{b}{a}\right)^{x-7}.\\\text{ What is the value of x ?}
    \end{align}

    1. 1.5
    2. 4.5
    3. 7.5
    4. 9.5
    Answer :

    Option B

    Explanation:

    \begin{align}&\left(\dfrac{a}{b}\right)^{x-2} = \left(\dfrac{b}{a}\right)^{x-7}\\\\
    &\Rightarrow \left(\dfrac{a}{b}\right)^{x-2} = \left(\dfrac{a}{b}\right)^{-(x-7)}\\\\
    &\Rightarrow x - 2 = -(x - 7)\\\\
    &\Rightarrow x - 2 = -x + 7\\\\
    &\Rightarrow x-2 = -x + 7\\\\
    &\Rightarrow 2x = 9\\\\
    &\Rightarrow x = \dfrac{9}{2} = 4.5
    \end{align}

  • 13. \begin{aligned} \text{If } 5^{(a + b)} = 5 \times 25 \times 125 ,\\ \text{what is }(a + b)^2

    \end{aligned}

    1. 25
    2. 28
    3. 36
    4. 44
    Answer :

    Option C

  • 14. Value of \begin{aligned} (256)^{\frac{5}{4}} \end{aligned}

    1. 1012
    2. 1024
    3. 1048
    4. 525
    Answer :

    Option B

    Explanation:

    \begin{aligned}
    = (256)^{\frac{5}{4}} = (4^4)^{\frac{5}{4}} = 4^5 = 1024
    \end{aligned}

Please Like Us