Simplification Questions Answers
-
1. How many pieces of 0.85 meteres can be cut from a rod 42.5 meteres long
- 30
- 40
- 50
- 60
Answer :
Option C
Explanation:
We need so simple divide 42.5/0.85,
=(4250/85) = 50 -
2. If a - b = 3 and \begin{aligned} a^2 + b^2 = 29 \end{aligned}, then find the value of ab
- 7
- 8.5
- 10
- 12
Answer :
Option C
Explanation:
Remember the formula, if not then cram it :)
\begin{aligned} 2ab = (a^2 + b^2)- (a-b)^2 \end{aligned}
=> 2ab = 29 - 9 = 20
=> ab = 10 -
3. Simplfy
b - [b -(a+b) - {b - (b - a+b)} + 2a]- a
- 2a
- 4a
- 0
Answer :
Option D
Explanation:
b-[b-(a+b)-{b-(b-a+b)}+2a]
=b-[b-a-b-{b-(2b-a)}+2a]
=b-[-a-{b-2b+a}+2a]
=b-[-a-{-b+a}+2a]
=b-[-a+b-a+2a]
=b-[-2a+b+2a]
=b-b
=0 -
4. What fraction of \begin{aligned} \frac{4}{7}\end{aligned} should be added to itself to become \begin{aligned} 1\frac{1}{14} \end{aligned}
- \begin{aligned} \frac{7}{8} \end{aligned}
- \begin{aligned} \frac{7}{9} \end{aligned}
- \begin{aligned} \frac{7}{10} \end{aligned}
- \begin{aligned} \frac{7}{11} \end{aligned}
Answer :
Option A
Explanation:
\begin{aligned}
=> \frac{4}{7}x + \frac{4}{7} = \frac{15}{4}
\end{aligned}
\begin{aligned}
= \frac{4}{7}x = \frac{15}{4} - \frac{4}{7}
\end{aligned}
\begin{aligned}
= \frac{4}{7}x = \frac{7}{14}
\end{aligned}
\begin{aligned}
= x = \frac{1}{2}\times \frac{7}{4} = \frac{7}{8}
\end{aligned} -
5. 3640 ÷ 14*16 + 340 = ?
- 3500
- 4500
- 1500
- 2500
Answer :
Option B
-
6. Value of \begin{aligned} 2^5 \times 9^2 \end{aligned} has been written as 2596, what is the difference between actual value.
- 1
- 2
- 3
- 4
Answer :
Option D
-
7. \begin{aligned}
(3\frac{1}{4}\div \{1\frac{1}{4} - \frac{1}{2}(2\frac{1}{2} - \overline {\frac{1}{4} - \frac{1}{6}} ) \} )
\end{aligned}- 78
- 88
- 98
- 108
Answer :
Option A
Explanation:
Tip:
As you can see, there is bar over
\begin{aligned}
\overline{\frac{1}{4}-\frac{1}{6}}
\end{aligned}
So their sign will be changed from - to + as
\begin{aligned}
\frac{1}{4}+\frac{1}{6}
\end{aligned}