Simplification Questions Answers

  • 1. How many pieces of 0.85 meteres can be cut from a rod 42.5 meteres long

    1. 30
    2. 40
    3. 50
    4. 60
    Answer :

    Option C

    Explanation:

    We need so simple divide 42.5/0.85,
    =(4250/85) = 50

  • 2. If a - b = 3 and \begin{aligned} a^2 + b^2 = 29 \end{aligned}, then find the value of ab

    1. 7
    2. 8.5
    3. 10
    4. 12
    Answer :

    Option C

    Explanation:

    Remember the formula, if not then cram it :)
    \begin{aligned} 2ab = (a^2 + b^2)- (a-b)^2 \end{aligned}
    => 2ab = 29 - 9 = 20
    => ab = 10

  • 3. Simplfy
    b - [b -(a+b) - {b - (b - a+b)} + 2a]

    1. a
    2. 2a
    3. 4a
    4. 0
    Answer :

    Option D

    Explanation:

    b-[b-(a+b)-{b-(b-a+b)}+2a]
    =b-[b-a-b-{b-(2b-a)}+2a]
    =b-[-a-{b-2b+a}+2a]
    =b-[-a-{-b+a}+2a]
    =b-[-a+b-a+2a]
    =b-[-2a+b+2a]
    =b-b
    =0

  • 4. What fraction of \begin{aligned} \frac{4}{7}\end{aligned} should be added to itself to become \begin{aligned} 1\frac{1}{14} \end{aligned}

    1. \begin{aligned} \frac{7}{8} \end{aligned}
    2. \begin{aligned} \frac{7}{9} \end{aligned}
    3. \begin{aligned} \frac{7}{10} \end{aligned}
    4. \begin{aligned} \frac{7}{11} \end{aligned}
    Answer :

    Option A

    Explanation:

    \begin{aligned}
    => \frac{4}{7}x + \frac{4}{7} = \frac{15}{4}
    \end{aligned}
    \begin{aligned}
    = \frac{4}{7}x = \frac{15}{4} - \frac{4}{7}
    \end{aligned}
    \begin{aligned}
    = \frac{4}{7}x = \frac{7}{14}
    \end{aligned}
    \begin{aligned}
    = x = \frac{1}{2}\times \frac{7}{4} = \frac{7}{8}
    \end{aligned}

  • 5. 3640 ÷ 14*16 + 340 = ?

    1. 3500
    2. 4500
    3. 1500
    4. 2500
    Answer :

    Option B

  • 6. Value of \begin{aligned} 2^5 \times 9^2 \end{aligned} has been written as 2596, what is the difference between actual value.

    1. 1
    2. 2
    3. 3
    4. 4
    Answer :

    Option D

  • 7. \begin{aligned}
    (3\frac{1}{4}\div \{1\frac{1}{4} - \frac{1}{2}(2\frac{1}{2} - \overline {\frac{1}{4} - \frac{1}{6}} ) \} )
    \end{aligned}

    1. 78
    2. 88
    3. 98
    4. 108
    Answer :

    Option A

    Explanation:

    Tip:
    As you can see, there is bar over
    \begin{aligned}
    \overline{\frac{1}{4}-\frac{1}{6}}
    \end{aligned}
    So their sign will be changed from - to + as
    \begin{aligned}
    \frac{1}{4}+\frac{1}{6}
    \end{aligned}

Please Like Us