Numbers Questions Answers

  • 8. What is the largest 4 digit number exactly divisible by 88

    1. 9900
    2. 9999
    3. 9988
    4. 9944
    Answer :

    Option D

    Explanation:

    Largest 4 digit number is 9999
    After doing 9999 ÷ 88 we get remainder 55
    Hence largest 4 digit number exactly divisible by 88 = 9999 - 55 = 9944

  • 9. 217 * 217 + 183 * 183

    1. 70578
    2. 82578
    3. 80578
    4. 80568
    Answer :

    Option C

    Explanation:

    \begin{aligned}
    \frac {1}{2}\times 2(a^2 + b^2) = \frac {1}{2} \times [(a + b)^2 + (a - b)^2]
    \end{aligned}
    \begin{aligned}
    = \frac {1}{2} \times [(217 + 183)^2 + (217 - 183)^2] = 80578
    \end{aligned}

  • 10. 469157 * 9999

    1. 1691100843
    2. 4591100843
    3. 4691100843
    4. 3691100843
    Answer :

    Option C

    Explanation:

    469157 * (10000 - 1)
    = 4691570000 - 469157
    = 4691100843

  • 11. 1307 * 1307 = ?

    1. 1608249
    2. 1508249
    3. 1408249
    4. 1708249
    Answer :

    Option D

    Explanation:

    \begin{aligned}
    (a + b)^{2} = (a^2 + b^2 + 2ab)
    \end{aligned}
    \begin{aligned}
    1307^{2} = (1300 + 7)^2 = (1690000 + 49 + 18200)
    \end{aligned}

  • 12. There are four prime numbers written in ascending order. The product of first three is 385 and that of last three is 1001. The last number is:

    1. 9
    2. 13
    3. 15
    4. 12
    Answer :

    Option B

    Explanation:

    \begin{aligned} \frac{abc}{bcd} = \frac{385}{1001}
    => \frac{a}{d} = \frac{5}{13} \end{aligned}
    So d = 13

  • 13. 7589 - X = 3434

    1. 4155
    2. 2321
    3. 3155
    4. None of above
    Answer :

    Option A

  • 14. Simplify 586645 * 9999

    1. 5865863355
    2. 5665863355
    3. 4865863355
    4. 4665863355
    Answer :

    Option A

    Explanation:

    Although it is a simple question, but the trick is to save time in solving this.
    Rather than multiplying it we can do as follows:
    586645 * (10000 - 1) = 5866450000 - 586645 = 5865863355

Please Like Us