Numbers Questions Answers
-
8. What is the largest 4 digit number exactly divisible by 88
- 9900
- 9999
- 9988
- 9944
Answer :
Option D
Explanation:
Largest 4 digit number is 9999
After doing 9999 ÷ 88 we get remainder 55
Hence largest 4 digit number exactly divisible by 88 = 9999 - 55 = 9944 -
9. 217 * 217 + 183 * 183
- 70578
- 82578
- 80578
- 80568
Answer :
Option C
Explanation:
\begin{aligned}
\frac {1}{2}\times 2(a^2 + b^2) = \frac {1}{2} \times [(a + b)^2 + (a - b)^2]
\end{aligned}
\begin{aligned}
= \frac {1}{2} \times [(217 + 183)^2 + (217 - 183)^2] = 80578
\end{aligned} -
10. 469157 * 9999
- 1691100843
- 4591100843
- 4691100843
- 3691100843
Answer :
Option C
Explanation:
469157 * (10000 - 1)
= 4691570000 - 469157
= 4691100843 -
11. 1307 * 1307 = ?
- 1608249
- 1508249
- 1408249
- 1708249
Answer :
Option D
Explanation:
\begin{aligned}
(a + b)^{2} = (a^2 + b^2 + 2ab)
\end{aligned}
\begin{aligned}
1307^{2} = (1300 + 7)^2 = (1690000 + 49 + 18200)
\end{aligned} -
12. There are four prime numbers written in ascending order. The product of first three is 385 and that of last three is 1001. The last number is:
- 9
- 13
- 15
- 12
Answer :
Option B
Explanation:
\begin{aligned} \frac{abc}{bcd} = \frac{385}{1001}
=> \frac{a}{d} = \frac{5}{13} \end{aligned}
So d = 13 -
13. 7589 - X = 3434
- 4155
- 2321
- 3155
- None of above
Answer :
Option A
-
14. Simplify 586645 * 9999
- 5865863355
- 5665863355
- 4865863355
- 4665863355
Answer :
Option A
Explanation:
Although it is a simple question, but the trick is to save time in solving this.
Rather than multiplying it we can do as follows:
586645 * (10000 - 1) = 5866450000 - 586645 = 5865863355