Volume and Surface Area Problems and Solutions Formulas, Tips and Tricks
1. Formula of Cuboid Volume, Surface Area and Daigonal
Let l be length, b be breadth and height = h units then,
\begin{aligned}
\text{Volume of Cuboid =}(l*b*h)\text{cubic units} \\
\text{Surface Area} = 2(lb + bh +hl)\text{sq. units}\\
\text{Diagonal =}\sqrt{l^2+b^2+h^2} units
\end{aligned}2. Formula of Cube Volume, Surface Area and Diagonal
Let each edge of a cube be of length a, then
\begin{aligned}
\text{Volume of cube =} a^3 \\
\text{Surface Area of cube =} 6a^2 &sq.units; \\
\text{Diagonal of cube =} \sqrt{3}a & units\\
\end{aligned}3. Cylinder Volume, Curved Surface Area, Total Surface Area Formula
\begin{aligned}
\text{Volume of cylinder =} (\pi r^2 h)\text{cubic units} \\
\text{Curved surface area of cylinder =} (2\pi r h) \text{sq. units}\\
\text{Total surface area of cylinder =} (2\pi r h + 2 \pi r^2 ) \text{sq. units}\\
= 2 \pi r (h+r) \text{sq. units}
\end{aligned}4. Cone Slant Height, Volume, Curved Surface Area, Total Surface Area Formula
Let Radius of base = r and height = h. Then,
\begin{aligned}
\text{Slant Height of cone, l = }\sqrt{r^2+h^2} units \\
\text{Volume of cone = }\left( \frac{1}{3}\pi r^2 h \right) \text{cubic units} \\
\text{Curved surface area of cone = }\left( \pi rl \right) \text{sq. units} \\
\text{Total surface area of cone = }\left( \pi rl + \pi r^2 \right) \text{sq. units} \\
\end{aligned}5. Sphere Volume and Surface Area Formula
Let the radius of the sphere be r, then,
\begin{aligned}
Volume = \left( \frac{4}{3}\pi r^3 \right) \text{cubic units} \\
Surface Area = \left( 4\pi r^2 \right) \text{sq. units} \\
\end{aligned}6. Hemisphere Volume, Curved Surface Area and Total Surface Area Formula
Let the radius of a hemisphere be r, Then,
\begin{aligned}
\text{Volume of Hemisphere =} \left( \frac{2}{3} \pi r^3 \right) \text{cubic units} \\
\text{Curved Surface area of Hemisphere =} \left( \frac{2}\pi r^2 \right) \text{sq. units} \\
\text{Total Surface area of Hemisphere =} \left( 3 \pi r^2 \right) \text{sq. units} \\
\text{Please remember 1 litre = }1000 cm^3
\end{aligned}